

Journal of Geometry and Physics 18 (1996) 326-334

On the riemannian metrics in \mathbb{R}^n which admit all hyperplanes as minimal hypersurfaces

Theodor Hangan

Université de Haute Alsace, Laboratoire de Mathématiques, 4 rue des Frères Lumière, 68093 Mulhouse, France

Received 17 October 1994; revised 23 January 1995

Abstract

Inspired by a result of Bekkar (1991), Robert Lutz raised the following problem: determine the riemannian metrics in domains of \mathbb{R}^n which admit all hyperplanes as minimal hypersurfaces. We solve the problem giving a formula which expresses its solutions in terms of the non-degenerate quadratic first integrals of the geodesic motion in the euclidean space (second-order Killing tensor fields). Then, we prove that for n = 3 the non-flat polynomial solutions of the problem are the left invariant riemannian metrics on the Heisenberg group.

Keywords: Minimal hypersurface; Heisenberg riemannian metric; Killing tensor 1991 MSC: 58B21

1. Introduction

A couple (D, g), where D is a connected open neighbourhood of \mathbb{R}^n and g a riemannian metric defined in D, will be said to satisfy the property \mathcal{L}_n if all the intersections $p \cap D$ of D with the hyperplanes p of \mathbb{R}^n are minimal hypersurfaces of the riemannian neighbourhood (D, g).

The couple (\mathbb{R}^n, g_E) where g_E indicates the canonical euclidean riemannian structure of \mathbb{R}^n satisfies the property \mathcal{L}_n .

Left invariant riemannian structures g_H on the Heisenberg group H_1 (the model in view in this note is \mathbb{R}^3 endowed with the group law $\mu_k : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$, $k \in \mathbb{R}^*$ defined by

$$\mu_k((x, y, z), (x', y', z')) = (x + x', y + y', z + z' + \frac{1}{2}kxy' - \frac{1}{2}kx'y))$$

provide us with examples $(\mathbb{R}^3, g_H) \in \mathcal{L}_3$, see [1].

0393-0440/96/\$15.00 © 1996 Elsevier Science B.V. All rights reserved SSDI 0393-0440(95)00007-0 Inspired by this example, R. Lutz raised the following problem: characterize all the couples $(D, g) \in \mathcal{L}_n$. In dimension n = 3 and for axially symmetric g, the problem was solved in [2].

In what follows we first establish the P.D.E. system, denoted \mathcal{E}_n , satisfied by the components g_{ij} of the tensor g in order that $(D, g) \in \mathcal{L}_n$. Then, we integrate the system \mathcal{E}_n and express its solutions in terms of non-degenerate second-order Killing tensor fields of (\mathbb{R}^n, g_E) . Finally, we characterize the riemannian structures (\mathbb{R}^3, g_H) as the only non-flat polynomial solutions of \mathcal{E}_3 .

2. The system \mathcal{E}_n

If one denotes $X^1, X^2, ..., X^n$ the cartesian coordinates of the affine space \mathbb{R}^n , the equation of a hyperplane p which does not contain the origin $O \in \mathbb{R}^n$ writes

$$p_1 X^1 + p_2 X^2 + \dots + p_n X^n = 1.$$

The parameters $(p_1, p_2, ..., p_n)$ will be considered as local coordinates on the variety of all hyperplanes p of \mathbb{R}^n . A riemannian structure g in \mathbb{R}^n is defined by a positive definite quadratic form in dX^1 , dX^2 ,..., dX^n say

$$ds^{2} = \sum_{i,j=1}^{n} g_{ij}(X^{1},...,X^{n}) dX^{i} dX^{j}.$$

At a point $x = (x^1, x^2, ..., x^n) \in \mathbb{R}^n$ which belongs to the hyperplane p $(p_1x^1 + \cdots + p_nx^n = 1)$ the equation of the tangent space at x to p, denoted $(Tp)_x$, writes

$$(p_1 \,\mathrm{d} X^1 + p_2 \,\mathrm{d} X^2 + \dots + p_n \,\mathrm{d} X^n)_x = 0$$

The parameters p_i , i = 1, 2, ..., n, represent the covariant components of a vector p(x), normal to the hyperplane p at x, the norm of this vector being

$$\|\boldsymbol{p}(x)\| = \left(\sum_{r,s} g^{rs}(x) p_r p_s\right)^{1/2}$$

Therefore $n : x \in p \longrightarrow n(x) = p(x)/||p(x)||$ is a unit vector field normal to p; it will be used to introduce the second fundamental form of p, denoted Φ_p . Its covariant components in (\mathbb{R}^n, g) are

$$n_i(x) = \frac{p_i}{\|\boldsymbol{p}(x)\|}, \quad i = 1, 2, ..., n.$$

The second fundamental form $\Phi_{p,x}$ at x is the restriction to $(Tp)_x$ of the quadratic form

$$-g(\nabla n(x), \mathrm{d} X) = -\sum_{i=1}^{n} \left(\mathrm{d} n_i(x) - \sum_{r,s} \{s^r_i\}_x n_r(x) \, \mathrm{d} X^s \right) \mathrm{d} X^i,$$

where ∇ denotes the Levi-Civita connection of g and $\{s^r\}_x$ are the values at x of the Christoffel symbols of the second kind of g. Clearly

$$\boldsymbol{\Phi}_{p,x} = \sum_{r,s,i} \{s^r_i\}_x \frac{p_r}{\|\boldsymbol{p}(x)\|} \mathrm{d} X^s \, \mathrm{d} X^i \Big|_{\sum_u p_u \, \mathrm{d} X^u = 0}.$$

Consider now the quadratic form on $(T\mathbb{R}^n)_x, x \in p$,

$$\Phi'_{p,x} = \sum_{r,s,i} \{s^{r}_{i}\}_{x} \frac{p_{r}}{\|p(x)\|} \left(dX^{s} - \frac{p^{s}(x)}{\|p(x)\|^{2}} \sum_{u} p_{u} dX^{u} \right) \\
\times \left(dX^{i} - \frac{p^{i}(x)}{\|p(x)\|^{2}} \sum_{v} p_{v} dX^{v} \right)$$

where $p^{i}(x) = \sum_{r} g^{ir}(x) p_{r}$ are the contravariant components of the vector p(x). One has

$$\Phi_{p,x} = \Phi'_{p,x} \mid_{(Tp)_x}$$

and the restriction of $\Phi'_{p,x}$ to the normal space to p at x vanishes identically as

$$\left(\mathrm{d}X^{i} - \frac{p^{i}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{v} p_{v}g \,\mathrm{d}X^{v} \right)(\boldsymbol{p}(x)) = p^{i}(x) - \frac{p^{i}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{v} p_{v}p^{v}(x) = 0.$$

Therefore, the trace of $\Phi'_{p,x}$ with respect to g_x in $(T\mathbb{R}^n)_x$ represents nothing but the mean curvature $H_{p,x}$ of p at $x \in p$ and one has

$$H_{p,x} = \sum_{u,v,r,s,t} g_x^{uv} \{s_t^r\}_x \frac{p_r}{\|\boldsymbol{p}(x)\|} \left(\delta_u^s - \frac{p^s(x)}{\|\boldsymbol{p}(x)\|^2} p_u\right) \left(\delta_v^t - \frac{p^t(x)}{\|\boldsymbol{p}(x)\|^2} p_v\right)$$

which writes also

$$\|\boldsymbol{p}(x)\|^{3}H_{p,x} = \sum_{u,v,r} g_{x}^{uv} \{ u^{r}_{v} \}_{x} p_{r} \|\boldsymbol{p}(x)\|^{2} - \sum_{u,v,i,r} g_{x}^{uv} \{ u^{r}_{i} \}_{x} p_{r} p^{i}(x) p_{v}.$$

The right-hand side of this formula is a homogeneous polynomial of third degree in $p_1, p_2, ..., p_n$ with coefficients depending on x. The vanishing of the mean curvature $H_{p,x}$, identically with respect to p and x, implies the equations

$$g^{\mu\nu}\{{}_{u}{}^{(r}{}_{v}\}g^{st}\} = g^{\mu(s}\{{}_{u}{}^{r}{}_{v}\}g^{t})^{v}, \qquad (\mathcal{E}^{n})$$

where parentheses denote symmetrisation with respect to the included indices. With the notation

$$[ij,k] := g_{kr}\{{}_{i}{}^{r}{}_{j}\}$$

for the Christoffel symbols of the first kind of g and $f_{i} = \partial f / \partial x^{i}$ for the partial derivatives,

the covariant version of the system (\mathcal{E}^n) becomes

$$g^{uv}([uv,r]g_{st} + [uv,s]g_{tr} + [uv,t]g_{rs}) = [(rs,t)] = \frac{1}{2}g_{(rs,t)}.$$
 (E_n)

Theorem 1. A riemannian structure (D,g), $D \subset \mathbb{R}^n$ is a solution of the problem \mathcal{L}_n if and only if the components and the Christoffel symbols of the tensor g satisfy the system \mathcal{E}^n or \mathcal{E}_n .

3. The integration of the system \mathcal{E}_n

First recall the formula

$$g^{rs}[ir,s] = (\ln|g|^{1/2}),_i,$$

where $|g| := \det(g_{ij})$, which is well known in riemannian geometry, see [5] for example. Contracting the equations \mathcal{E}_n with g^{rs} one obtains

$$(n+2)g^{uv}[uv,t] = 2(\ln|g|^{1/2}), t + g^{rs}[rs,t]$$

. . . .

and therefore

$$(n+1)g^{uv}[uv,t] = (\ln|g|)_{,t}$$
.

Replacing in \mathcal{E}_n , this one writes

$$(\ln|g|), (r g_{st}) = (n+1)[(rs, t)]$$

and also

$$(\ln|g|^{1/(n+1)}), (r g_{st}) = \frac{1}{2}g_{(rs,t)}.$$
 (\mathcal{E}'_n)

At this point it seems natural to introduce a new riemannian structure G, conformally related to g, through

$$G_{ij} := |g|^{-2/(n+1)} g_{ij}.$$

One has

$$G_{ij,k} = |g|^{-2/(n+1)} \left(g_{ij,k} - \frac{2}{n+1} \frac{|g|_{k}}{|g|} g_{ij} \right)$$

and system \mathcal{E}'_n becomes

$$G_{(ij,k)} = 0. \tag{\vec{E}_n'}$$

Moreover

$$|G| := \det(G_{ij}) = (|g|^{-2/(n+1)})^n |g| = |g|^{(1-n)/(n+1)}$$

and

$$|g| = |G|^{(n+1)/(1-n)}$$

One recognizes in \mathcal{E}''_n the equation which defines the second-order Killing tensor fields of the euclidean space (\mathbb{R}^n, g_E). Every solution G of system \mathcal{E}''_n provides a solution g of the system \mathcal{E}_n given by

$$g_{ij} = |G|^{2/(1-n)}G_{ij},$$

which is defined in the domains D where $|G| \neq 0$. For the literature concerning Killing tensor fields the reader is referred to the article [3]. Killing tensor fields of the euclidean space are reducible; this means that all of them are linear combinations with constant coefficients of symmetric products of Killing vector fields of (\mathbb{R}^n, g_E) . In other words, the symmetric bilinear form $\Sigma G_{ij} dX^i \circ dX^j$ can be expressed in terms of the n(n+1)/2 Killing 1-forms of (\mathbb{R}^n, g_E)

$$dX^{i}, X^{i} \wedge dX^{j} := X^{i} dX^{j} - X^{j} dX^{i}, \quad i, j = 1, 2, ..., n$$

through the formula

$$\begin{split} \sum_{i \leq j} G_{ij} \, \mathrm{d}X^i \circ \mathrm{d}X^j &= \sum_{i \leq j} a_{ij} \, \mathrm{d}X^i \circ \mathrm{d}X^j + \sum_{i \neq j} b_{ij} \, \mathrm{d}X^i \circ (X^i \wedge \mathrm{d}X^j) \\ &+ \sum_{i \neq j; \ i, j < k} c_{ijk} \, \mathrm{d}X^i \circ (X^j \wedge \mathrm{d}X^k) \\ &+ \sum_{i < j} d_{ij} (X^i \wedge \mathrm{d}X^j) \circ (X^i \wedge \mathrm{d}X^j) \\ &+ \sum_{i < j < k; \ i \neq j, k} e_{ijk} (X^j \wedge \mathrm{d}X^i) \circ (X^k \wedge \mathrm{d}X^i) \\ &+ \sum_{i < j < k < l} [h_{ij,kl} (X^i \wedge \mathrm{d}X^j) \circ (X^k \wedge \mathrm{d}X^l) \\ &+ h_{ik,jl} (X^i \wedge \mathrm{d}X^k) \circ (X^j \wedge \mathrm{d}X^l)], \end{split}$$

where $a_{ij}, b_{ij}, c_{ijk}, d_{ij}, e_{ijk}, h_{ij,kl}$ are

$$M_2(n) = n(n+1)^2(n+2)/12$$

arbitrary constants and o denotes the symmetric tensor product

$$\mathrm{d} X^i \circ \mathrm{d} X^j = \frac{1}{2} (\mathrm{d} X^i \otimes \mathrm{d} X^j + \mathrm{d} X^j \otimes \mathrm{d} X^i).$$

Theorem 2. The solutions g of the problem \mathcal{L}_n come from the positive definite secondorder Killing tensor fields G of the euclidean space through multiplication by a certain power $(|G|^{2/(1-n)})$ of the determinant |G|. The polynomial solutions of the problem \mathcal{L}_n correspond to the Killing tensors G of constant determinant |G|. For n = 3, the solutions are always rational.

330

4. A characterisation of the metrics $g_{H,k}$

The riemannian metrics

$$ds^{2} = dx^{2} + dy^{2} + [dz - \frac{1}{2}k(x \, dy - y \, dx)]^{2}, \quad k \in \mathbb{R}^{*}$$

denoted $g_{H,k}$, represent polynomial solutions of the problem \mathcal{L}_3 in \mathbb{R}^3 ; their determinant is constant, |g| = 1. The riemannian metrics $g_{H,k}$ are invariant under left translations on the Lie group (\mathbb{R}^3, μ_k) defined in the introduction because the 1-forms dx, dy, $dz - \frac{1}{2}kx dy + \frac{1}{2}ky dx$ are so.

The group (\mathbb{R}^3, μ_k) is isomorphic with the Heisenberg group

$$H_1 = \left\{ \left(\begin{array}{rrr} 1 & X & Z \\ 0 & 1 & Y \\ 0 & 0 & 1 \end{array} \right), \ X, Y, Z \in \mathbb{R} \right\}.$$

The formulas

$$X = x$$
, $Y = y$, $Z = k^{-1}z + \frac{1}{2}xy$

establish such an isomorphism and transform the metric $g_{H,k}$ into

$$\mathrm{d}\sigma_k^2 = \mathrm{d}X^2 + \mathrm{d}Y^2 + k^2(\mathrm{d}Z - X\,\mathrm{d}Y)^2$$

on H_1 . One knows, see [4], that every left-invariant riemannian metric on H_1 is equivalent with some $d\sigma_k^2$. We prove now that for n = 3, the condition |G| = const. characterizes the metrics $g_{H,k}$; equivalently, the metrics $g_{H,k}$ are the only polynomial solutions of the problem \mathcal{L}_3 (modulo automorphisms of the euclidean space). The solution G of the system \mathcal{E}_3'' in a form which is more convenient to computations, after orthonormalisation of the basis of \mathbb{R}^3 with respect to G(0), writes

$$\sum_{i \leq j} G_{ij} \, \mathrm{d}X^i \circ \mathrm{d}X^j = \mathrm{d}x^2 + \beta_{12} \, \mathrm{d}x \circ (y \wedge \mathrm{d}x) + \beta_{21} \, \mathrm{d}y \circ (x \wedge \mathrm{d}y)$$
$$-\gamma_1 x \, \mathrm{d}y \circ \mathrm{d}z + \delta_1 (y \wedge \mathrm{d}z) \circ (y \wedge \mathrm{d}z)$$
$$+\varepsilon_1 (x \wedge \mathrm{d}y) \circ (x \wedge \mathrm{d}z) + \cdots,$$

where points stand for terms one can obtain from those already written under cyclic permutations of the letters x, y, z and the indices 1, 2, 3. The 15 constants β_{ij} , γ_i , ε_i are related by

 $\gamma_1 + \gamma_2 + \gamma_3 = 0.$

The coefficients of the quadratic form G are

$$G_{11} = 1 + \beta_{12}y + \beta_{13}z + \delta_3 y^2 + \delta_2 z^2 + \varepsilon_1 yz,$$

-G_{12} = \beta_{12}x + \beta_{21}y + \beta_{3z}z + 2\delta_{3x}y + \varepsilon_1 xz + \varepsilon_2 yz - \varepsilon_3 z^2,

and those obtained from them under cyclic permutations. By direct calculations, in order that |G| = 1, one finds the following conditions:

(i)
$$\beta_{21} + \beta_{31} = 0, ...,$$

(ii) $2\delta_1 = -\frac{1}{2}\gamma_2\gamma_3 - \frac{1}{2}\beta_{21}^2 + \beta_{12}^2 + \beta_{13}^2, ...,$
(iii) $\varepsilon_1 = \frac{3}{2}\beta_{32}\beta_{23} + \frac{1}{2}\beta_{21}\gamma_3 + \frac{1}{2}\beta_{31}\gamma_2, ...,$
(iv) $\gamma_1\beta_{12}\beta_{13} + \beta_{31}(\beta_{32}^2 - \beta_{23}^2) = 0, ...,$
(v) $\gamma_1\gamma_2\gamma_3 + \gamma_1\beta_{31}^2 + \gamma_2\beta_{12}^2 + \gamma_3\beta_{23}^2 = 0,$
(vi) $\beta_{12}\beta_{31}(\gamma_1 - \gamma_3) + \beta_{23}(\gamma_1\gamma_2 + \beta_{31}^2 - 2\beta_{32}^2 + \beta_{23}^2) = 0,$
The proof will be done in three steps.

Step 1: Suppose $\beta_{12}\beta_{23}\beta_{31} \neq 0$. The precedent algebraic system defines all the parameters in terms of $\beta_{12}, \beta_{23}, \beta_{31}$ and the quadratic form corresponding to G becomes

$$dS^{2} := \sum_{i \leq j} G_{ij} dX^{i} dX^{j}$$

= $(\beta^{4}/4)\omega^{2} + \beta^{-4} [\beta_{31}^{2}(\beta_{12}^{2} + \beta_{23}^{2}) dx^{2} + \dots + 2\beta_{23}^{2}\beta_{31}\beta_{32} dx dy + \dots],$

where

$$\omega := \beta_{23}^{-1} (y \, dx - x \, dy) + \beta_{31}^{-1} (z \, dy - y \, dz) + \beta_{12}^{-1} (x \, dz - z \, dx) + 2\beta^{-4} (\beta_{23}\beta_{12} \, dx + \beta_{31}\beta_{23} \, dy + \beta_{12}\beta_{31} \, dz)$$

and

$$\beta^4 := \beta_{12}^2 \beta_{23}^2 + \beta_{23}^2 \beta_{31}^2 + \beta_{31}^2 \beta_{12}^2.$$

With respect to a new orthonormal frame, chosen so that the new coordinate z becomes

$$Z := \beta^{-2}(\beta_{23}\beta_{12}x + \beta_{31}\beta_{23}y + \beta_{12}\beta_{31}z),$$

one finds that

$$(\beta^2/2)\omega = dZ + (\beta^4/(2\beta_{12}\beta_{23}\beta_{31}))[Y\,dX - X\,dY].$$

The quadratic form

$$\beta^{-4} [\beta_{31}^2 (\beta_{12}^2 + \beta_{23}^2) \, \mathrm{d}x^2 + \dots + 2\beta_{23}^2 \beta_{31} \beta_{32} \, \mathrm{d}x \, \mathrm{d}y + \dots],$$

which is of rank 2, invariant under rotations about the OZ-axis and vanishes in the OZdirection, becomes $dX^2 + dY^2$ with respect to the new orthonormal coordinates X, Y, Z. Therefore, with respect to the new coordinates,

$$dS^{2} = [dZ + (\beta^{4}/(2\beta_{12}\beta_{23}\beta_{31}))(Y dX - X dY)]^{2} + dX^{2} + dY^{2},$$

which is a riemannian metric of $g_{H,k}$ type.

Step 2: Suppose now $\beta_{12}\beta_{23}\beta_{31} = 0$ but $\beta_{23} \neq 0$. Eq. (iv) shows that $\beta_{12} = \beta_{31} = 0$ but from (vi) one deduces that

$$\gamma_1\gamma_2=-\beta_{23}^2\neq 0.$$

Due to this fact $(\gamma_1 \gamma_2 \neq 0)$ one can rotate the frame about the Ox-axis in order to get a new frame Ox'y'z' with respect to which $\beta'_{12}\beta'_{23}\beta'_{31} \neq 0$.

Step 3: If all the β_{ij} vanish, Eq. (v) gives:

$$\gamma_1\gamma_2\gamma_3 = 0$$

and at least one of the γ_i 's vanish, say $\gamma_3 = 0$. Then, $\gamma_2 = -\gamma_1$ and one has

$$dS^{2} = [dz + (\gamma_{2}/2)(x dy - y dx)]^{2} + dx^{2} + dy^{2}.$$

Theorem 3. Modulo an isometry of the euclidean space (\mathbb{R}^3, g_E) , the riemannian metrics $g_{H,k}$ are the only polynomial solutions of the \mathcal{L}_3 problem.

It would be suitable to know the polynomial solutions of the \mathcal{L}_n problem for n > 3.

5. Final remarks

Remark 1. The problem \mathcal{L}_n can be formulated for pseudo-riemannian metrics too and Theorems 1 and 2 get unchanged.

Remark 2. One can slightly modify the problem into say \mathcal{L}_n^c by looking for the riemannian metrics g, defined in domains D of \mathbb{R}^n , for which all the linear varieties of codimension c are minimal. Problem \mathcal{L}_n^1 coincides with \mathcal{L}_n but for c > 1 the problem \mathcal{L}_n^c is not interesting in the sense that its solutions are nothing but constant curvature metrics.

Remark 3. Projective diffeomorphisms permute solutions of the \mathcal{L}_n problem. This means that system \mathcal{E}_n is projectively invariant fact which is not evident in its present form. But one can transform it remembering that for projectively related riemannian metrics g and g' i.e. riemannian metrics which admit the same geodesics, the Christoffel symbols $\{j^i_k\}$ and $\{j^i_k\}'$ are related by the formulas, see [5],

$$\{j^i{}_k\}' = \{j^i{}_k\} + \delta^i_j \varphi_k + \delta^i_k \varphi_j.$$

Contracting for i = j one gets

$$(\ln|g'|^{1/2})_{,k} = (\ln|g|^{1/2})_{,k} + (n+1)\varphi_k.$$

Eliminating the φ_k 's between these equations, one gets a projective tensor field P(g), with components

$$P_{jk}^{i} := \{j^{i}_{k}\} - \frac{1}{n+1}\delta_{j}^{i}(\ln|g|^{1/2}), \quad -\frac{1}{n+1}\delta_{k}^{i}(\ln|g|^{1/2}), \quad j \in \mathbb{N}$$

which is invariant under projective diffeomorphisms. With the notation

$$P_{jk\,i} := \sum_{r} P_{jk}^{r} g_{ri} = [jk,i] - \frac{1}{n+1} g_{ij} (\ln|g|^{1/2})_{,k} - \frac{1}{n+1} g_{ik} (\ln|g|^{1/2})_{,j}$$

for its covariant components, the system \mathcal{E}_n becomes

$$\sum_{uv} g^{uv} P_{uv(r}g_{st)} = P_{(rs\ t)} \tag{\mathcal{E}_n^*}$$

and now the projective character of the system is evident.

References

- [1] M. Bekkar, Exemples de surfaces minimales dans l'espace de Heisenberg, Rend. Sem. Mat. Univ. Cagliari, 6, fasc. 2 (1991).
- [2] M. Bekkar, Sur une caractérisation des métriques de Heisenberg, C. R. Acad. Sci. Paris, t. 318, Série I, (1994) 1017-1019.
- [3] S. Benenti and M. Francaviglia, The theory of separability of the Hamilton-Jacobi equation and its applications to general relativity, *General Relativity and Gravitation*, Vol. I (1980).
- [4] P. Pansu, Géométrie du groupe de Heisenberg, Thèse, Univ. Paris VII (1982).
- [5] G. Vranceanu, Leçons de géométrie différentielle, Vol. I, II, Ed. Acad. Roumaine (1957).

334