On the riemannian metrics in \mathbb{R}^{n} which admit all hyperplanes as minimal hypersurfaces

Theodor Hangan
Université de Haute Alsace, Laboratoire de Mathématiques, 4 rue des Frères Lumière, 68093 Mulhouse, France

Received 17 October 1994; revised 23 January 1995

Abstract

Inspired by a result of Bekkar (1991), Robert Lutz raised the following problem: determine the riemannian metrics in domains of \mathbb{R}^{n} which admit all hyperplanes as minimal hypersurfaces. We solve the problem giving a formula which expresses its solutions in terms of the non-degenerate quadratic first integrals of the geodesic motion in the euclidean space (second-order Killing tensor fields). Then, we prove that for $n=3$ the non-flat polynomial solutions of the problem are the left invariant riemannian metrics on the Heisenberg group.

Keywords: Minimal hypersurface; Heisenberg riemannian metric; Killing tensor 1991 MSC: 58B21

1. Introduction

A couple (D, g), where D is a connected open neighbourhood of \mathbb{R}^{n} and g a riemannian metric defined in D, will be said to satisfy the property \mathcal{L}_{n} if all the intersections $p \cap D$ of D with the hyperplanes p of \mathbb{R}^{n} are minimal hypersurfaces of the riemannian neighbourhood (D, g).

The couple ($\mathbb{R}^{n}, g_{\mathrm{E}}$) where g_{E} indicates the canonical euclidean riemannian structure of \mathbb{R}^{n} satisfies the property \mathcal{L}_{n}.

Left invariant riemannian structures g_{H} on the Heisenberg group H_{1} (the model in view in this note is \mathbb{R}^{3} endowed with the group law $\mu_{k}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, k \in \mathbb{R}^{*}$ defined by

$$
\left.\mu_{k}\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2} k x y^{\prime}-\frac{1}{2} k x^{\prime} y\right)\right)
$$

provide us with examples $\left(\mathbb{R}^{3}, g_{\mathrm{H}}\right) \in \mathcal{L}_{3}$, see [1].

Inspired by this example, R. Lutz raised the following problem: characterize all the couples $(D, g) \in \mathcal{L}_{n}$. In dimension $n=3$ and for axially symmetric g, the problem was solved in [2].

In what follows we first establish the P.D.E. system, denoted \mathcal{E}_{n}, satisfied by the components $g_{i j}$ of the tensor g in order that $(D, g) \in \mathcal{L}_{n}$. Then, we integrate the system \mathcal{E}_{n} and express its solutions in terms of non-degenerate second-order Killing tensor fields of ($\mathbb{R}^{n}, g_{\mathrm{E}}$). Finally, we characterize the riemannian structures $\left(\mathbb{R}^{3}, g_{\mathrm{H}}\right)$ as the only non-flat polynomial solutions of \mathcal{E}_{3}.

2. The system \mathcal{E}_{n}

If one denotes $X^{1}, X^{2}, \ldots, X^{n}$ the cartesian coordinates of the affine space \mathbb{R}^{n}, the equation of a hyperplane p which does not contain the origin $O \in \mathbb{R}^{n}$ writes

$$
p_{1} X^{1}+p_{2} X^{2}+\cdots+p_{n} X^{n}=1
$$

The parameters ($p_{1}, p_{2}, \ldots, p_{n}$) will be considered as local coordinates on the variety of all hyperplanes p of \mathbb{R}^{n}. A riemannian structure g in \mathbb{R}^{n} is defined by a positive definite quadratic form in $\mathrm{d} X^{1}, \mathrm{~d} X^{2}, \ldots, \mathrm{~d} X^{n}$ say

$$
\mathrm{d} s^{2}=\sum_{i, j=1}^{n} g_{i j}\left(X^{1}, \ldots, X^{n}\right) \mathrm{d} X^{i} \mathrm{~d} X^{j}
$$

At a point $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in \mathbb{R}^{n}$ which belongs to the hyperplane $p\left(p_{1} x^{1}+\cdots+\right.$ $p_{n} x^{n}=1$) the equation of the tangent space at x to p, denoted ($\left.T p\right)_{x}$, writes

$$
\left(p_{1} \mathrm{~d} X^{1}+p_{2} \mathrm{~d} X^{2}+\cdots+p_{n} \mathrm{~d} X^{n}\right)_{x}=0
$$

The parameters $p_{i}, i=1,2, \ldots, n$, represent the covariant components of a vector $\boldsymbol{p}(x)$, normal to the hyperplane p at x, the norm of this vector being

$$
\|\boldsymbol{p}(x)\|=\left(\sum_{r, s} g^{r s}(x) p_{r} p_{s}\right)^{1 / 2}
$$

Therefore $n: x \in p \longrightarrow n(x)=\boldsymbol{p}(x) /\|\boldsymbol{p}(x)\|$ is a unit vector field normal to p; it will be used to introduce the second fundamental form of p, denoted Φ_{p}. Its covariant components in $\left(\mathbb{R}^{n}, g\right)$ are

$$
n_{i}(x)=\frac{p_{i}}{\|\boldsymbol{p}(x)\|}, \quad i=1,2, \ldots, n
$$

The second fundamental form $\Phi_{p, x}$ at x is the restriction to ($\left.T p\right)_{x}$ of the quadratic form

$$
-g(\nabla n(x), \mathrm{d} X)=-\sum_{i=1}^{n}\left(\mathrm{~d} n_{i}(x)-\sum_{r, s}\left\{s^{r}{ }_{i}\right\}_{x} n_{r}(x) \mathrm{d} X^{s}\right) \mathrm{d} X^{i},
$$

where ∇ denotes the Levi-Civita connection of g and $\left\{s^{r}{ }_{i}\right\}_{x}$ are the values at x of the Christoffel symbols of the second kind of g. Clearly

$$
\Phi_{p, x}=\left.\sum_{r, s, i}\left\{s_{i}^{r}\right\}_{x} \frac{p_{r}}{\|p(x)\|} \mathrm{d} X^{s} \mathrm{~d} X^{i}\right|_{\sum_{u} p_{u} \mathrm{~d} X^{u}=0}
$$

Consider now the quadratic form on $\left(T \mathbb{R}^{n}\right)_{x}, x \in p$,

$$
\begin{aligned}
\Phi_{p, x}^{\prime}= & \sum_{r, s, i}\left\{{ }_{s}^{r}{ }_{i}\right\}_{x} \frac{p_{r}}{\|\boldsymbol{p}(x)\|}\left(\mathrm{d} X^{s}-\frac{p^{s}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{u} p_{u} \mathrm{~d} X^{u}\right) \\
& \times\left(\mathrm{d} X^{i}-\frac{p^{i}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{v} p_{v} \mathrm{~d} X^{v}\right)
\end{aligned}
$$

where $p^{i}(x)=\sum_{r} g^{i r}(x) p_{r}$ are the contravariant components of the vector $p(x)$. One has

$$
\Phi_{p, x}=\left.\Phi_{p, x}^{\prime}\right|_{(T p)_{x}}
$$

and the restriction of $\Phi_{p, x}^{\prime}$ to the normal space to p at x vanishes identically as

$$
\left(\mathrm{d} X^{i}-\frac{p^{i}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{v} p_{v} g \mathrm{~d} X^{v}\right)(\boldsymbol{p}(x))=p^{i}(x)-\frac{p^{i}(x)}{\|\boldsymbol{p}(x)\|^{2}} \sum_{v} p_{v} p^{v}(x)=0
$$

Therefore, the trace of $\Phi_{p, x}^{\prime}$ with respect to g_{x} in $\left(T \mathbb{R}^{n}\right)_{x}$ represents nothing but the mean curvature $H_{p, x}$ of p at $x \in p$ and one has

$$
H_{p, x}=\sum_{u, v, r, s, t} g_{x}^{u v}\left\{_{s}^{r} l_{x} \frac{p_{r}}{\|\boldsymbol{p}(x)\|}\left(\delta_{u}^{s}-\frac{p^{s}(x)}{\|\boldsymbol{p}(x)\|^{2}} p_{u}\right)\left(\delta_{v}^{t}-\frac{p^{t}(x)}{\|\boldsymbol{p}(x)\|^{2}} p_{v}\right)\right.
$$

which writes also

$$
\|\boldsymbol{p}(x)\|^{3} H_{p, x}=\sum_{u, v, r} g_{x}^{u v}\left\{u^{r}{ }^{r}\right\}_{x} p_{r}\|\boldsymbol{p}(x)\|^{2}-\sum_{u, v, i, r} g_{x}^{u v}\left\{u^{r}{ }_{i}\right\}_{x} p_{r} p^{i}(x) p_{v}
$$

The right-hand side of this formula is a homogeneous polynomial of third degree in $p_{1}, p_{2}, \ldots, p_{n}$ with coefficients depending on x. The vanishing of the mean curvature $H_{p, x}$, identically with respect to p and x, implies the equations

$$
\begin{equation*}
g^{u v}\left\{u^{(r}{ }_{v}\right\} g^{s t)}=g^{u(s}\left\{u^{r} v\right\} g^{t) v} \tag{n}
\end{equation*}
$$

where parentheses denote symmetrisation with respect to the included indices. With the notation

$$
[i j, k]:=g_{k r}\left\{{ }_{i}^{r}\right\}
$$

for the Christoffel symbols of the first kind of g and $f, i=\partial f / \partial x^{i}$ for the partial derivatives,
the covariant version of the system $\left(\mathcal{E}^{n}\right)$ becomes

$$
\begin{equation*}
g^{u v}\left([u v, r] g_{s t}+[u v, s] g_{t r}+[u v, t] g_{r s}\right)=[(r s, t)]=\frac{1}{2} g_{(r s, t)} . \tag{n}
\end{equation*}
$$

Theorem 1. A riemannian structure (D, g), $D \subset \mathbb{R}^{n}$ is a solution of the problem \mathcal{L}_{n} if and only if the components and the Christoffel symbols of the tensor g satisfy the system \mathcal{E}^{n} or \mathcal{E}_{n}.

3. The integration of the system \mathcal{E}_{n}

First recall the formula

$$
g^{r s}[i r, s]=\left(\ln |g|^{1 / 2}\right)_{, i}
$$

where $|g|:=\operatorname{det}\left(g_{i j}\right)$, which is well known in riemannian geometry, see [5] for example. Contracting the equations \mathcal{E}_{n} with $g^{r s}$ one obtains

$$
(n+2) g^{u v}[u v, t]=2\left(\ln |g|^{1 / 2}\right), t+g^{r s}[r s, t]
$$

and therefore

$$
(n+1) g^{u v}[u v, t]=(\ln |g|), t .
$$

Replacing in \mathcal{E}_{n}, this one writes

$$
(\ln |g|),\left(r g_{s t}=(n+1)[(r s, t)]\right.
$$

and also

$$
\begin{equation*}
\left(\ln |g|^{1 /(n+1)}\right),\left(r g_{s t)}=\frac{1}{2} g_{(r s, t)}\right. \tag{n}
\end{equation*}
$$

At this point it seems natural to introduce a new riemannian structure G, conformally related to g, through

$$
G_{i j}:=|g|^{-2 /(n+1)} g_{i j} .
$$

One has

$$
G_{i j, k}=|g|^{-2 /(n+1)}\left(g_{i j, k}-\frac{2}{n+1} \frac{|g|, k}{|g|} g_{i j}\right)
$$

and system \mathcal{E}_{n}^{\prime} becomes

$$
\begin{equation*}
G_{(i j, k)}=0 . \tag{n}
\end{equation*}
$$

Moreover

$$
|G|:=\operatorname{det}\left(G_{i j}\right)=\left(|g|^{-2 /(n+1)}\right)^{n}|g|=|g|^{(1-n) /(n+1)}
$$

and

$$
|g|=|G|^{(n+1) /(1-n)}
$$

One recognizes in $\mathcal{E}_{n}^{\prime \prime}$ the equation which defines the second-order Killing tensor fields of the euclidean space ($\mathbb{R}^{n}, g_{\mathrm{E}}$). Every solution G of system $\mathcal{E}_{n}^{\prime \prime}$ provides a solution g of the system \mathcal{E}_{n} given by

$$
g_{i j}=|G|^{2 /(1-n)} G_{i j}
$$

which is defined in the domains D where $|G| \neq 0$. For the literature concerning Killing tensor fields the reader is referred to the article [3]. Killing tensor fields of the euclidean space are reducible; this means that all of them are linear combinations with constant coefficients of symmetric products of Killing vector fields of $\left(\mathbb{R}^{n}, g_{\mathrm{E}}\right)$. In other words, the symmetric bilinear form $\Sigma G_{i j} \mathrm{~d} X^{i} \circ \mathrm{~d} X^{j}$ can be expressed in terms of the $n(n+1) / 2$ Killing 1-forms of $\left(\mathbb{R}^{n}, g_{E}\right)$

$$
\mathrm{d} X^{i}, X^{i} \wedge \mathrm{~d} X^{j}:=X^{i} \mathrm{~d} X^{j}-X^{j} \mathrm{~d} X^{i}, \quad i, j=1,2, \ldots, n
$$

through the formula

$$
\begin{aligned}
\sum_{i \leq j} G_{i j} \mathrm{~d} X^{i} \circ \mathrm{~d} X^{j}= & \sum_{i \leq j} a_{i j} \mathrm{~d} X^{i} \circ \mathrm{~d} X^{j}+\sum_{i \neq j} b_{i j} \mathrm{~d} X^{i} \circ\left(X^{i} \wedge \mathrm{~d} X^{j}\right) \\
& +\sum_{i \neq j: i, j<k} c_{i j k} \mathrm{~d} X^{i} \circ\left(X^{j} \wedge \mathrm{~d} X^{k}\right) \\
& +\sum_{i<j} d_{i j}\left(X^{i} \wedge \mathrm{~d} X^{j}\right) \circ\left(X^{i} \wedge \mathrm{~d} X^{j}\right) \\
& +\sum_{j<k: i \neq j, k} e_{i j k}\left(X^{j} \wedge \mathrm{~d} X^{i}\right) \circ\left(X^{k} \wedge \mathrm{~d} X^{i}\right) \\
& +\sum_{i<j<k<l}\left[h_{i j, k l}\left(X^{i} \wedge \mathrm{~d} X^{j}\right) \circ\left(X^{k} \wedge \mathrm{~d} X^{l}\right)\right. \\
& \left.+h_{i k, j l}\left(X^{i} \wedge \mathrm{~d} X^{k}\right) \circ\left(X^{j} \wedge \mathrm{~d} X^{l}\right)\right]
\end{aligned}
$$

where $a_{i j}, b_{i j}, c_{i j k}, d_{i j}, e_{i j k}, h_{i j, k l}$ are

$$
M_{2}(n)=n(n+1)^{2}(n+2) / 12
$$

arbitrary constants and \circ denotes the symmetric tensor product

$$
\mathrm{d} X^{i} \circ \mathrm{~d} X^{j}=\frac{1}{2}\left(\mathrm{~d} X^{i} \otimes \mathrm{~d} X^{j}+\mathrm{d} X^{j} \otimes \mathrm{~d} X^{i}\right)
$$

Theorem 2. The solutions g of the problem \mathcal{L}_{n} come from the positive definite secondorder Killing tensor fields G of the euclidean space through multiplication by a certain power $\left(|G|^{2 /(1-n)}\right)$ of the determinant $|G|$. The polynomial solutions of the problem \mathcal{L}_{n} correspond to the Killing tensors G of constant determinant $|G|$. For $n=3$, the solutions are always rational.

4. A characterisation of the metrics $g_{\mathrm{H}, k}$

The riemannian metrics

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\left[\mathrm{d} z-\frac{1}{2} k(x \mathrm{~d} y-y \mathrm{~d} x)\right]^{2}, \quad k \in \mathbb{R}^{*}
$$

denoted $g_{H, k}$, represent polynomial solutions of the problem \mathcal{L}_{3} in \mathbb{R}^{3}; their determinant is constant, $|g|=1$. The riemannian metrics $g_{H, k}$ are invariant under left translations on the Lie group (\mathbb{R}^{3}, μ_{k}) defined in the introduction because the 1 -forms $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z-\frac{1}{2} k x \mathrm{~d} y+\frac{1}{2} k y \mathrm{~d} x$ are so.

The group $\left(\mathbb{R}^{3}, \mu_{k}\right)$ is isomorphic with the Heisenberg group

$$
H_{1}=\left\{\left(\begin{array}{ccc}
1 & X & Z \\
0 & 1 & Y \\
0 & 0 & 1
\end{array}\right), X, Y, Z \in \mathbb{R}\right\}
$$

The formulas

$$
X=x, \quad Y=y, \quad Z=k^{-1} z+\frac{1}{2} x y
$$

establish such an isomorphism and transform the metric $g_{\mathrm{H}, k}$ into

$$
\mathrm{d} \sigma_{k}^{2}=\mathrm{d} X^{2}+\mathrm{d} Y^{2}+k^{2}(\mathrm{~d} Z-X \mathrm{~d} Y)^{2}
$$

on H_{1}. One knows, see [4], that every left-invariant riemannian metric on H_{1} is equivalent with some $\mathrm{d} \sigma_{k}^{2}$. We prove now that for $n=3$, the condition $|G|=$ const. characterizes the metrics $g_{\mathrm{H}, k}$; equivalently, the metrics $g_{\mathrm{H}, k}$ are the only polynomial solutions of the problem \mathcal{L}_{3} (modulo automorphisms of the euclidean space). The solution G of the system $\mathcal{E}_{3}^{\prime \prime}$ in a form which is more convenient to computations, after orthonormalisation of the basis of \mathbb{R}^{3} with respect to $G(0)$, writes

$$
\begin{aligned}
\sum_{i \leq j} G_{i j} \mathrm{~d} X^{i} \circ \mathrm{~d} X^{j}= & \mathrm{d} x^{2}+\beta_{12} \mathrm{~d} x \circ(y \wedge \mathrm{~d} x)+\beta_{21} \mathrm{~d} y \circ(x \wedge \mathrm{~d} y) \\
& -\gamma_{1} x \mathrm{~d} y \circ \mathrm{~d} z+\delta_{1}(y \wedge \mathrm{~d} z) \circ(y \wedge \mathrm{~d} z) \\
& +\varepsilon_{1}(x \wedge \mathrm{~d} y) \circ(x \wedge \mathrm{~d} z)+\cdots,
\end{aligned}
$$

where points stand for terms one can obtain from those already written under cyclic permutations of the letters x, y, z and the indices $1,2,3$. The 15 constants $\beta_{i j}, \gamma_{i}, \varepsilon_{i}$ are related by

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=0
$$

The coefficients of the quadratic form G are

$$
\begin{aligned}
& G_{11}=1+\beta_{12} y+\beta_{13} z+\delta_{3} y^{2}+\delta_{2} z^{2}+\varepsilon_{1} y z \\
& -G_{12}=\beta_{12} x+\beta_{21} y+\gamma_{3} z+2 \delta_{3} x y+\varepsilon_{1} x z+\varepsilon_{2} y z-\varepsilon_{3} z^{2}
\end{aligned}
$$

and those obtained from them under cyclic permutations. By direct calculations, in order that $|G|=1$, one finds the following conditions:
(i) $\beta_{21}+\beta_{31}=0, \ldots$,
(ii) $2 \delta_{1}=-\frac{1}{2} \gamma_{2} \gamma_{3}-\frac{1}{2} \beta_{21}^{2}+\beta_{12}^{2}+\beta_{13}^{2}, \ldots$,
(iii) $\varepsilon_{1}=\frac{3}{2} \beta_{32} \beta_{23}+\frac{1}{2} \beta_{21} \gamma_{3}+\frac{1}{2} \beta_{31} \gamma_{2}, \ldots$,
(iv) $\gamma_{1} \beta_{12} \beta_{13}+\beta_{31}\left(\beta_{32}^{2}-\beta_{23}^{2}\right)=0, \ldots$,
(v) $\gamma_{1} \gamma_{2} \gamma_{3}+\gamma_{1} \beta_{31}^{2}+\gamma_{2} \beta_{12}^{2}+\gamma_{3} \beta_{23}^{2}=0$,
(vi) $\beta_{12} \beta_{31}\left(\gamma_{1}-\gamma_{3}\right)+\beta_{23}\left(\gamma_{1} \gamma_{2}+\beta_{31}^{2}-2 \beta_{32}^{2}+\beta_{23}^{2}\right)=0, \ldots$.

The proof will be done in three steps.
Step 1: Suppose $\beta_{12} \beta_{23} \beta_{31} \neq 0$. The precedent algebraic system defines all the parameters in terms of $\beta_{12}, \beta_{23}, \beta_{31}$ and the quadratic form corresponding to G becomes

$$
\begin{aligned}
\mathrm{d} S^{2} & :=\sum_{i \leq j} G_{i j} \mathrm{~d} X^{i} \mathrm{~d} X^{j} \\
& =\left(\beta^{4} / 4\right) \omega^{2}+\beta^{-4}\left[\beta_{31}^{2}\left(\beta_{12}^{2}+\beta_{23}^{2}\right) \mathrm{d} x^{2}+\cdots+2 \beta_{23}^{2} \beta_{31} \beta_{32} \mathrm{~d} x \mathrm{~d} y+\cdots\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\omega:= & \beta_{23}^{-1}(y \mathrm{~d} x-x \mathrm{~d} y)+\beta_{31}^{-1}(z \mathrm{~d} y-y \mathrm{~d} z)+\beta_{12}^{-1}(x \mathrm{~d} z-z \mathrm{~d} x) \\
& +2 \beta^{-4}\left(\beta_{23} \beta_{12} \mathrm{~d} x+\beta_{31} \beta_{23} \mathrm{~d} y+\beta_{12} \beta_{31} \mathrm{~d} z\right)
\end{aligned}
$$

and

$$
\beta^{4}:=\beta_{12}^{2} \beta_{23}^{2}+\beta_{23}^{2} \beta_{31}^{2}+\beta_{31}^{2} \beta_{12}^{2}
$$

With respect to a new orthonormal frame, chosen so that the new coordinate z becomes

$$
Z:=\beta^{-2}\left(\beta_{23} \beta_{12} x+\beta_{31} \beta_{23} y+\beta_{12} \beta_{31} z\right)
$$

one finds that

$$
\left(\beta^{2} / 2\right) \omega=\mathrm{d} Z+\left(\beta^{4} /\left(2 \beta_{12} \beta_{23} \beta_{31}\right)\right)[Y \mathrm{~d} X-X \mathrm{~d} Y]
$$

The quadratic form

$$
\beta^{-4}\left[\beta_{31}^{2}\left(\beta_{12}^{2}+\beta_{23}^{2}\right) \mathrm{d} x^{2}+\cdots+2 \beta_{23}^{2} \beta_{31} \beta_{32} \mathrm{~d} x \mathrm{~d} y+\cdots\right]
$$

which is of rank 2 , invariant under rotations about the $O Z$-axis and vanishes in the $O Z$ direction, becomes $\mathrm{d} X^{2}+\mathrm{d} Y^{2}$ with respect to the new orthonormal coordinates X, Y, Z. Therefore, with respect to the new coordinates,

$$
\mathrm{d} S^{2}=\left[\mathrm{d} Z+\left(\beta^{4} /\left(2 \beta_{12} \beta_{23} \beta_{31}\right)\right)(Y \mathrm{~d} X-X \mathrm{~d} Y)\right]^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}
$$

which is a riemannian metric of $g_{\mathrm{H}, k}$ type.
Step 2: Suppose now $\beta_{12} \beta_{23} \beta_{31}=0$ but $\beta_{23} \neq 0$. Eq. (iv) shows that $\beta_{12}=\beta_{31}=0$ but from (vi) one deduces that

$$
\gamma_{1} \gamma_{2}=-\beta_{23}^{2} \neq 0
$$

Due to this fact $\left(\gamma_{1} \gamma_{2} \neq 0\right)$ one can rotate the frame about the $O x$-axis in order to get a new frame $O x^{\prime} y^{\prime} z^{\prime}$ with respect to which $\beta_{12}^{\prime} \beta_{23}^{\prime} \beta_{31}^{\prime} \neq 0$.

Step 3: If all the $\beta_{i j}$ vanish, Eq. (v) gives:

$$
\gamma_{1} \gamma_{2} \gamma_{3}=0
$$

and at least one of the γ_{i} 's vanish, say $\gamma_{3}=0$. Then, $\gamma_{2}=-\gamma_{1}$ and one has

$$
\mathrm{d} S^{2}=\left[\mathrm{d} z+\left(\gamma_{2} / 2\right)(x \mathrm{~d} y-y \mathrm{~d} x)\right]^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}
$$

Theorem 3. Modulo an isometry of the euclidean space $\left(\mathbb{R}^{3}, \mathrm{~g}_{\mathrm{E}}\right)$, the riemannian metrics $g_{H, k}$ are the only polynomial solutions of the \mathcal{L}_{3} problem.

It would be suitable to know the polynomial solutions of the \mathcal{L}_{n} problem for $n>3$.

5. Final remarks

Remark 1. The problem \mathcal{L}_{n} can be formulated for pseudo-riemannian metrics too and Theorems 1 and 2 get unchanged.

Remark 2. One can slightly modify the problem into say \mathcal{L}_{n}^{c} by looking for the riemannian metrics g, defined in domains D of \mathbb{R}^{n}, for which all the linear varieties of codimension c are minimal. Problem \mathcal{L}_{n}^{1} coincides with \mathcal{L}_{n} but for $c>1$ the problem \mathcal{L}_{n}^{c} is not interesting in the sense that its solutions are nothing but constant curvature metrics.

Remark 3. Projective diffeomorphisms permute solutions of the \mathcal{L}_{n} problem. This means that system \mathcal{E}_{n} is projectively invariant fact which is not evident in its present form. But one can transform it remembering that for projectively related riemannian metrics g and g^{\prime} i.e. riemannian metrics which admit the same geodesics, the Christoffel symbols $\left\{j^{i}{ }_{k}\right\}$ and $\left\{j_{k}{ }_{k}\right\}^{\prime}$ are related by the formulas, see [5],

$$
\left\{j^{i}{ }_{k}\right\}^{\prime}=\left\{j^{i}{ }_{k}\right\}+\delta_{j}^{i} \varphi_{k}+\delta_{k}^{i} \varphi_{j}
$$

Contracting for $i=j$ one gets

$$
\left(\ln \left|g^{\prime}\right|^{1 / 2}\right),_{k}=\left(\ln |g|^{1 / 2}\right),_{k}+(n+1) \varphi_{k}
$$

Eliminating the φ_{k} 's between these equations, one gets a projective tensor field $P(g)$, with components

$$
P_{j k}^{i}:=\left\{j_{k}^{i}\right\}-\frac{1}{n+1} \delta_{j}^{i}\left(\ln |g|^{1 / 2}\right), k-\frac{1}{n+1} \delta_{k}^{i}\left(\ln |g|^{1 / 2}\right)_{, j},
$$

which is invariant under projective diffeomorphisms. With the notation

$$
P_{j k i}:=\sum_{r} P_{j k}^{r} g_{r i}=[j k, i]-\frac{1}{n+1} g_{i j}\left(\ln |g|^{1 / 2}\right)_{, k}-\frac{1}{n+1} g_{i k}\left(\ln |g|^{1 / 2}\right), j
$$

for its covariant components, the system \mathcal{E}_{n} becomes

$$
\begin{equation*}
\sum_{u v} g^{u v} P_{u v(r} g_{s t)}=P_{(r s t)} \tag{n}
\end{equation*}
$$

and now the projective character of the system is evident.

References

[1] M. Bekkar, Exemples de surfaces minimales dans l'espace de Heisenberg, Rend. Sem. Mat. Univ. Cagliari, 6, fasc. 2 (1991).
[2] M. Bekkar, Sur une caractérisation des métriques de Heisenberg, C. R. Acad. Sci. Paris, t. 318, Série I, (1994) 1017-1019.
[3] S. Benenti and M. Francaviglia, The theory of separability of the Hamilton-Jacobi equation and its applications to general relativity, General Relativity and Gravitation, Vol. I (1980).
[4] P. Pansu, Géométrie du groupe de Heisenberg, Thèse, Univ. Paris VII (1982).
[5] G. Vranceanu, Leçons de géométrie différentielle, Vol. I, II, Ed. Acad. Roumaine (1957).

