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Abstract 

Inspired by a result of Bekkar (1991), Robert Lutz raised the following problem: determine the 
riemannian metrics in domains of R n which admit all hyperplanes as minimal hypersurfaces. We 
solve the problem giving a formula which expresses its solutions in terms of the non-degenerate 
quadratic first integrals of the geodesic motion in the euclidean space (second-order Killing tensor 
fields). Then, we prove that for n = 3 the non-flat polynomial solutions of the problem are the left 
invariant riemannian metrics on the Heisenberg group. 
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1. Introduction 

A couple (D, g), where D is a connected open neighbourhood of  ~n and g a riemannian 

metric defined in D, will be said to satisfy the property/~n if all the intersections p f3 D of  D 

with the hyperplanes p of  R n are minimal hypersurfaces of  the riemannian neighbourhood 

( D , g ) .  

The couple (R n, gE) where gE indicates the canonical euclidean riemannian structure of  

R n satisfies the property £n. 

Left invariant riemannian structures gH on the Heisenberg group Hi (the model in view 

in this note is It~ 3 endowed with the group l aw/z t  : R 3 × R 3 --~ R 3, k c R* defined by 

I zk( (x ,y , z ) ,  ( x ' , y ' , z ' ) )  = (x +xr ,  y + f , z  + zr + l k x f  - l k x ' y ) )  

provide us with examples (R 3, gH) ~ L3, see [1]. 
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Inspired by this example, R. Lutz raised the following problem: characterize all the 

couples (D, g) 6 £n. In dimension n = 3 and for axially symmetric g, the problem was 
solved in [2]. 

In what follows we first establish the ED.E. system, denoted C~, satisfied by the com- 

ponents gij of the tensor g in order that (D, g) ~ £n. Then, we integrate the system Cn 

and express its solutions in terms of non-degenerate second-order Killing tensor fields of 
(~n, gE)- Finally, we characterize the riemannian structures (~3, gH) as the only non-flat 

polynomial solutions of  E3. 

2. The system En 

If one denotes X l, X2 ..... X n the cartesian coordinates of  the affine space ~n, the equation 

of a hyperplane p which does not contain the origin 0 6 ~n writes 

p i X  l + p2 X2 + . . .  + pn Xn = 1. 

The parameters (Pl ,  P2 . . . . .  Pn) will be considered as local coordinates on the variety of  
all hyperplanes p of  R n. A riemannian structure g in R ~ is defined by a positive definite 
quadratic form in dX l , dX 2 ..... d X  n say 

ds 2 : ~ gi j (  X I  . . . . .  X n ) d X  i d X  j .  

i,j=l 

At a point x = ( x l , x  2 . . . . .  x n) ~ ~n which belongs to the hyperplane p ( p j x  I + . . .  + 

pnX n = 1) the equation of  the tangent space at x to p, denoted (Tp)x ,wr i tes  

(Pl d Xl + p 2 d X  2 + "'" + p n d X n ) x  ---- O. 

The parameters Pi, i : l, 2 ..... n, represent the covariant components of a vector p ( x l ,  

normal to the hyperplane p at x, the norm of this vector being 

I l p ( x ) l l = ( r ~ g r S ( x ) p r P s )  1/2 • 

Therefore n : x ~ p ~ n (x )  = p(x) / l lp(x) I I  is a unit vector field normal to p; it will be 
used to introduce the second fundamental form of p, denoted Pp.  Its covariant components 
in (R n, g) are 

Pi 
n i ( x ) -  - -  i = 1,2 ..... n. 

lip(x) I1' 

The second fundamental form ~p,x at x is the restriction to (T p )x  of the quadratic form 
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where V denotes the Levi-Civita connection of g and {sri }x are the values at x of the 

Christoffel symbols of the second kind of g. Clearly 

t~)p,x ~_ Z { s r i }  x Pr dXS dX i Y~,u 
r,s,i ][~(x) II P" dXU=0" 

Consider now the quadratic form o n  (TRn)x, x E p, 

' --~"~t r'l Pr (dXS pS(x'  ~ u ) 
~p.x --/_.~.ts ,,x rP(x)II lip(x) II 2 Pu d Xu 

F~S,I 

1 
where pi (x) = Y~r gir (X)pr are the contravariant components of the vectorp(x). One has 

cl)p,x = ~; ,x  ](rp)x 

and the restriction of q~,x to the normal space to p at x vanishes identically as 

i i p - ~  2 p v g d X  v (p(x))  = pi(x)  1~--~2 v 

Therefore, the trace of q~p,x with respect to gx in (T~n)x represents nothing but the mean 
curvature Hp,x of p at x ~ p and one has 

Hp,x = Z uv, r • Pr (t~s - PS(X) ~ ( pt(x)  gx is  pu/ 
u.o .r ,s , ,  

which writes also 

I[p(x)ll3np,x = y ~  gU~{uro}xPrl[p(x)ll2 - y ~  gUxV{uri}xPrpi(x)pv. 
u,v,r u,v,i,r 

The right-hand side of this formula is a homogeneous polynomial of third degree in 
Pl, p2 ..... Pn with coefficients depending on x. The vanishing of the mean curvature Hp,x, 
identically with respect to p and x, implies the equations 

gUy {u (r v }gSt) = gU (s {u r v }gt)V, (~n) 

where parentheses denote symmetrisation with respect to the included indices. With the 
notation 

[ij,k] := gkr{irj} 

for the Christoffel symbols of the first kind of g and f , i  = Of/Ox i for the partial derivatives, 
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the covariant version of the system (E n) becomes 

gUV([uv, r]gst + [uv, s]gtr + [uv, t]grs) = [(rs, t)] = I g(rs,t). (En) 

T h e o r e m  1. A riemannian structure (D,g) ,  D C ~n is a solution of the problem £.n if and 
only if the components and the Christoffel symbols of  the tensor g satisfy the system C n 
or  ~n. 

3. The  in tegra t ion of the sys tem £n 

First recall the formula 

grS[ir, s] = (Inlg[1/2),i, 

where Igl :-- det(gij), which is well known in riemannian geometry, see [5] for example. 
Contracting the equations £n with grS one obtains 

(n + 2)gUV[uv, t] = 2(Inlg]l/2),t +grS[rs,t] 

and therefore 

(n + l)gUV[uv, t] -- (lnlgl),t • 

Replacing in £n, this one writes 

(lnlgl),(r gst) = (n q- 1)[(rs, t)] 

and also 

l (E~) (lnlgll/(n+l)),(r gst) = ~g(rs,t).  

At this point it seems natural to introduce a new riemannian structure G, conformally related 

to g, through 

G i j  := Igl-2/(n+l)gij. 

One has 

G i j  k = Ig1-2/(n+l) gij,k gi j  
' n + l  Igl 

and system g,~ becomes 

G(ij ,k)  = O. 

Moreover 

IGI := de t (Gi j )=  (Ig[-2/(n+l))nlgl = [gl ( I - m / ~ + l )  
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and 

Igl = IGI (n+l)/(1-n). 

One recognizes in gn' the equation which defines the second-order Killing tensor fields of 
the euclidean space (•n, gE). Every solution G of system E~' provides a solution g of the 

system En given by 

gij = ]G[2/(l-n)Gij, 

which is defined in the domains D where [G[ ~ 0. For the literature concerning Killing 
tensor fields the reader is referred to the article [3]. Killing tensor fields of the euclidean space 
are reducible; this means that all of them are linear combinations with constant coefficients 
of symmetric products of Killing vector fields of (•n gE). In other words, the symmetric 
bilinear form .~,Gij dX i o dX j can be expressed in terms of the n(n + 1)/2 Killing 1-forms 
of (~n, gE) 

dX i, X i A dX j := X i dX j - -  X j dX i, i, j = 1,2 ..... n 

through the formula 

Z GijdXi  °dXJ---  Z a i jdx i  °dXJ  + Z b i jdx i  O(xi  AdXJ) 
i<j i<j i~kj 

'+- E Cijk dX i o (X j A dX k) 
i#j; i,j<k 

+ Z di j (xi  A dX j) o (X i A dX j) 
i<j 

+ E eijk(X j A d X  i) o ( X  k A d X  i) 
j<k; i#j,k 

+ Z [hij'kl(Xi A dX j) o (X k A dX l) 
i<j<k<l 

+hik,jl(X i A dX k) o (X j A dxl)] ,  

where aij, bij, Cijk, dij, eijk, hij,k! are 

M2(n) = n(n + 1)2(n + 2)/12 

arbitrary constants and o denotes the symmetric tensor product 

dX i o d X  j = ½(dX i @dX j + d X  j @dXi).  

Theorem 2. The solutions g of the problem En come from the positive definite second- 
order Killing tensor fields G of the euclidean space through multiplication by a certain 
power (IGI 2/fl-n)) of the determinant IGI. The polynomial solutions of the problem En 
correspond to the Killing tensors G of constant determinant IGI. For n = 3, the solutions 
are always rational. 
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4. A characterisation of the metrics gH,k 

The riemannian metrics 

ds 2 = d x  2 + d y  2 + [ d z - ½ k ( x d y - y d x ) ]  2, k~[~*  

denoted gH,k, represent polynomial solutions of the problem £3 in R3; their determinant is 

constant, I g I = 1. The riemannian metrics gH,k are invariant under left translations on the Lie 
group (~3,/zk) defined in the introduction because the 1-forms dx, dy, d z -  ½kx d y +  ½kY dx 

are so. 
The group (1~ 3,/zk) is isomorphic with the Heisenberg group 

H1 = 0 1 Y , X , Y , Z  ~ R . 

0 0 1 

The formulas 

X = x,  Y = y, Z = k - l z  + ½xY 

establish such an isomorphism and transform the metric gH,k into 

d~r 2 = dX 2 + dY 2 + k2(dZ - X dY) 2 

on H1. One knows, see [4], that every left-invariant riemannian metric on Hi is equivalent 
with some dcr 2. We prove now that for n = 3, the condition I GI = const, characterizes 

the metrics gH,k; equivalently, the metrics gR,k are the only polynomial solutions of the 

problem Z;3 (modulo automorphisms of the euclidean space). The solution G of the system 
g~' in a form which is more convenient to computations, after orthonormalisation of the 

basis of N3 with respect to G(0), writes 

Z Gij d X  i o dX j = dx 2 +/~12 dx o (y A dx) + f121 dy o (x A dy) 
i<_j 

- F i X  dy o dz + 31 (y Adz) o (y m dz) 

+ e l ( x  Ady) o (x Adz) + . . . ,  

where points stand for terms one can obtain from those already written under cyclic per- 

mutations of the letters x, y, z and the indices 1, 2, 3. The 15 constants f i j ,  Fi, ei are related 

by 

) / 1 + } - ' 2 + ) / 3 = 0 .  

The coefficients of the quadratic form G are 

GII = 1 +fllZY +/313z +33y  2 q-~2Z 2 -]-81yz, 

-G12 = fll2X +/321Y + y3z + 233xy + e j x z  + e2yz - e3z 2, 
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and those obtained from them under cyclic permutations. By direct calculations, in order 

that IGI = l, one finds the following conditions: 

(i) /321 +/331 = 0 . . . . .  
(i i)  1 1 2 2 2 2t$1 = --~YZY3 -- 2/321 q-/312 -}-/313 . . . . .  

8 3 1 1 ( i i i )  1 = ~/332/323 q- ~/321y3 + ~/331Y2 .. . . .  
(iv) Yl/312/313 d-/331 (f132 - /322)  = 0 . . . . .  
(v) ~,1×2~,3 + ×1/32 + ×2/322 + ~,3&2 = o, 

(vi) /3~2/33~(×~ - r3) +/323(×~rz + / 3 ~  - 2t~22 + ~23) = 0 . . . . .  

The proof will be done in three steps. 

Step 1: Suppose/312/323/331 ~ 0. The precedent algebraic system defines all the param- 
eters in terms of/312,/323,/331 and the quadratic form corresponding to G becomes 

where 

dS 2 

and 

: =  Z Gij d X i d X  j 
i<_j 

jq-4[/32 (a2 q- 2fl23/331/332 dx dy  + . . ] ,  -~- (/34/4)O92 -~- ~' 31 P12 -{-/323) dx2 %- . . . .  

co :=/3~1 (y dx - x dy) +/3~1 (z dy - y dz) q-/3~1 (x dz - z dx) 

q-2fl-4(/323/312 dx q-/331fl23 dy + fl12/331 dz) 

2 2 f12 /32 /32 /32 /34 :=/312/323 + 23 31 + 31 12" 

With respect to a new orthonormal frame, chosen so that the new coordinate z becomes 

Z ==/3-2(/323/312x -'}-/331/323Y "Jr-/312/331Z), 

one finds that 

(/32/2)00 = dZ + (/34/(2/312/323/331))[Y d X  - X dY]. 

The quadratic form 

-4 2 2 2 + 2/323/331/332 dx dy + .], /3 [/331(/312 +/323 ) d x 2  + . . . . .  

which is of rank 2, invariant under rotations about the OZ-axis and vanishes in the OZ- 
direction, becomes d X  2 + d Y  2 with respect to the new orthonormal coordinates X, Y, Z. 
Therefore, with respect to the new coordinates, 

dS 2 = [dZ  + (/34/(2/312/323/331))(YdX - X d Y ) ]  2 + d X  2 + dY 2, 

which is a riemannian metric of gn,k type. 

Step 2: Suppose now/312/323/331 = 0 but/323 g= 0. Eq. (iv) shows that/312 =/331 = 0 
but from (vi) one deduces that 

f12 Y1Y2 = -- 23 5 kO" 
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Due to this fact (Yl Y2 ~ 0) one can rotate the frame about the Ox-axis in order to get a 

new frame Ox'y'z '  with respect to which fl'12~3/~1 • 0. 
Step 3: If all the t~ij vanish, Eq. (v) gives: 

Yl Y2Y3 = 0  

and at least one of the yi's vanish, say Y3 = 0. Then, 9/2 = - y ]  and one has 

dS 2 = [dz + (72/2)(x dy - y dx)] 2 + dx 2 + dy 2. 

Theorem 3. Modulo an isometry of  the euclidean space (~3,gE), the riemannian metrics 
gn,k are the only polynomial solutions of the E3 problem. 

It would be suitable to know the polynomial solutions of  the/2n problem for n > 3. 

5. Final remarks 

Remark 1. The problem En can be formulated for pseudo-riemannian metrics too and 
Theorems 1 and 2 get unchanged. 

R e m a r k  2. One can slightly modify the problem into say £c  by looking for the riemannian 
metrics g, defined in domains D of •n, for which all the linear varieties of codimension c 

are minimal. Problem £~ coincides with £n but for c > 1 the problem £~ is not interesting 

in the sense that its solutions are nothing but constant curvature metrics. 

R e m a r k  3. Projective diffeomorphisms permute solutions of the £n problem. This means 

that system £n is projectively invariant fact which is not evident in its present form. But 
one can transform it remembering that for projectively related riemannian metrics g and g '  
i.e. riemannian metrics which admit the same geodesics, the Christoffel symbols {jik} and 
{ji k }t are related by the formulas, see [5], 

{jik}' -~- {jik} Jr" ~)~Ok + ~ik~ j .  

Contracting for i = j one gets 

(lnlg'll/2),k = (lnlglU2),k + (n  + l)gok. 

Eliminating the ~0k's between these equations, one gets a projective tensor field P(g) ,  with 

components 

1 3~(Inlgll/2), k -  1 P{jk :=  {J ik } -- n + 1 n + 13 (lnlgll/2), , 

which is invariant under projective diffeomorphisms. With the notation 

Pjk i := Z PJ rkgri = [jk, i] - ~ g i j  (lnfgl 
1 

n 1/2)'k n_~g ik ( ln lg  I l/2),j 
r 
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for its covariant  components ,  the system gn becomes  

E gUVpuv(rgst) -~ P(rs t) 
u p  

and now the project ive  character  o f  the system is evident.  
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